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ABSTRACT 

Let X be a Banach space and let a, b, q be real numbers  such that a < b, q > 0. 
Denote  by D a locally closed subset  of X. A necessary and sufficient condition 
for the existence of a mild solution u ~ C ( [ a -  q, bt], X), a < b~ < b, to the 
differential equation du (t)/dt = A u ( t ) +  [(t, u,), such that u: [a, bl]---) D, u, = 
is given. The  linear operator  A is the generator  of a Co semigroup T(t), t >= O, 
with T(t)  compact  for t > 0, .f: [a, b) x C([ - q, 0], D~)---) X is cont inuous and 
q~ E C([ - q, 0], D~) with ~ (0) ~ D. D~ is a ne ighbourhood of D. Applications to 
parabolic partial differential equat ions with retarded a rgument  are given. 

I. Introduction 

Throughout this paper X is a real or complex Banach space with norm II " tl, 

C = C([a, b] ,X)  is the Banach space of continuous functions mapping the 

interval [a, b] into X, with the topology of uniform convergence. The norm of C 

will be denoted also by II" [I- Given a function x: [ a -  q, a + a ] ~ X ,  a >0 ,  

define for each t E [a, a + a] the function x,: [ -  q , 0 ] ~  X, by x,(O) = x( t  + 0), 

0 E I -q ,01 .  
Let A be the generator of a strongly continuous semigroup of linear bounded 

operators T(t) E L (X) ,  with II T(t)ll <-- 1, t >-_ O. 

Consider the initial value problem 

(1.1) d u ( t ) = A u ( t ) + f ( t , u , ) ,  a < t < b  
dt = 

u. = ~o, ~ ~ C([ - q, 0], X), (1.2) 

where uo(0) = u(a + 0), - q  <= 0 <-_0. 

Following Browder [2], we call a mild solution of (1.1) + (1.2), a solution of the 

integral equation 
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~a t 
(1.3) u (t) = T(t - a)~ (0)+ T(t - s)f(s, u,)ds, a <= t < b 

(1.4) ua = q~. 

Let D C X be a locally closed subset (i.e. for each x E D there is r > 0 such that 

D N {y E X, [1 y - x [1 = r} is closed in X). Denote  by D, = {y E X, d (y ;  D )  _-< X}, 

where ~t is an arbitrary positive number and d(y ;  D )  means the distance from y 

to D. 

We say that D is invariant (or forward invariant) set for (1.3) if for each 

q~EC([-q,O],D~), with q~(0)ED, there is c = c ( ~ ) > a  and a solution 

u E C ( [ a - q , c ] , X )  to (1.3) such that Ua = q~ and u ( t ) E D  for all t~[a ,c] ,  

c<b .  

The main result of this paper is the following local existence theorem: 

THEOREM 1.1. Let D C X  be a locally closed subset and let f : [ a , b ) x  

C([ - q, 0], D , ) ~  X be a continuous function, a < b <- + oo. Let T(t), t >= O, be a 

Co semigroup on X. Assume the following condition holds: 

(1.5) lira 1 d(T(h)v(O) + hf(t, v); O ) =  0 

for all t ~ [a, b) and v E C ( [ -  q,0],D~), with v(O)E D. 

If  T(t) is compact for t > O, then (1.5) is a necessary and sufficient condition for 

the existence of a solution u E C ( [ a -  q, c] ,X)  to (1.3) such that Ua = ~  and 

u( t )E  D for t ~[a,c],  where c = c(q~)E(a,b), ~p ~ C([-q,O],DA). 

Inasmuch asld(x;D)-d(y;D)] = IIx - y  II, Vx, y ~ x ,  it follows that (1.5)is 
equivalent to 

(1.6) l imhd(T(h)v(O)+ f'+h T(t + h - s ) f ( t , v ) d s ;  D)=O 
h~.0 ', 

for all t E [a, b) and v E C([ - q, 0]; D~), with v (0) E D. 

The idea of assuming the compactness of T(t) for t > 0  in the theory of 

abstract differential equations, which are characterized by the fact that the 

associated homogeneous linear problem generates T(t), is due to Pazy [11]. 

This paper is a generalization of the paper [14] to the case of linear 

perturbation of differential equations of retarded type. 

For proving Theorem 1.1, we construct first of all a sequence of approximate 

solutions using the techniques of Martin [7], [8], [9] and of Webb [16], under the 

form developed in [12] and [14]. In the proof of the convergence of these 

approximate solutions we use the technique of Pazy [11] (as in [14]). 
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If q = 0, we may consider in (1.5) the set D instead of D,  and thus we obtain 

the main result of [14], which extends those of Crandall [4] and Pazy [11]. 

In the case X-finite dimensional we can take A = 0 in (1.1). In this case, for 

D = X, (1.5) is automatically satisfied and therefore Theorem 1.1 becomes a well 

known result of Hale [5]. 

In [15] no compactness of T(t) is assumed, but restrictions on jr are imposed 

(namely jr(t, v) is Lipschitz continuous with respect to v). 

In the last part of the paper the continuation of solutions is studied and an 

application to parabolic partial differential equations with retarded argument is 

given. 

We thank Professors C. Corduneanu and V. Barbu, and the referee for helpful 

suggestions. 

2. The main results 

The main result of this paper is that given by Theorem 1.1. Another  result (on 

the continuation of the solutions of (1.3)) will be given at the end of this section. 

PROOF OF THEOREM 1.1 

Necessity. Let t be arbitrary in [a,b) and let v E C ( [ - q , O ] , D A )  with 

v(O)ED. Assume that there is a number a = a ( v ) > 0  and a continuous 

function u on It - q, t + a] ,  t + a < b, such that 

(2.1) u ( t ' ) =  T( t ' - t ) v (O)+ T ( t ' - s ) f ( s ,  us)ds, t<=t'<=t+a 

(2.2) u , = v  on [ - q , 0 ] ,  u:[t,t+ot]---~D, 

i.e. u ( t + h ) E D  for a l l h ~ [ 0 ,  t~]. 

Set t ' -  t = h. Then (2.1) and (2.2) yield 

1 d( T(h )v(0) + hf(t, v); D ) _-<  -II Z(h )v(0) + hi(t, v) - u(t + h )11 

= [ ( t , v ) - - ~ j ,  r ( t + h - s ) j r ( s , u , ) d s  ~ 0  as h ~ 0 .  

which proves the necessity of (1.5). 

Su.f]iciency. Let ~ be an arbitrary element of C([ - q, 0]; D , )  with ~ (0) E D. 

We will prove that there is ~ = ~(~o ) > 0, a~ < b - a, and a continuous function 

u satisfying (1 .3 )on  [ a , a+o t l ] ,  u ( t ) ~ D  for t~[a ,a+oel]  and u ,=~0  on 

[ - q, 0]. Denote  by S(~0 (0), r) C X (respectively S(~0, r) C C ( [ -  q, 0], X))  the ball 
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of radius r about ~ ( 0 ) E D  (respectively 

r E (0, A] be small enough such that 

(2.3) Ill(t, 'J)ll =< M, for all t E [a, a + a] ,  

U C([ - q, 0], X)). Let a > 0 and 

a + a < b  and vES(~p,r)  

(2.4) D N S(q~(0),r) isclosed. 

Such a > 0, r > 0, and /~ > 0 satisfying (2.3) and (2.4) exist since f is 

continuous (therefore locally bounded) and D is locally closed. Let rl ~ (0, r). 
Choose a~ ~ (0, a]  such that 

(2.5) ll~(oO-u,(o~)ll<r-r~ for IO~-O:l<=a~, O.O~[-q,01 

(2.6) max 11T(t)~o(O) - ~(O)l] + a i M  <_ r,, M = 1 + 291. 
O ~ t ~ a  1 

Let n be an arbitrary natural number. 

Define a function u":  [ a -  q,a],  by u " ( a  + 0 ) =  ~o(0), for 0 ~ [ -  q,0]. 

According to the definition of x, given in the Introduction, this means u ] = ~0. 
n n _  Define also to = a, U o -  q~(O)E D. Therefore 

n _  n ~ _ _  u o - u " ( t g ) = u " ( a ) = ~ o ( O ) E D  and u~ q~. 

Assume that we have constructed u" on [a,t~] with u" ( tT )=  

u ? E D  n S(~0(0), r), u77 E C ( [ -  q, O],D, ) N g(q,, r). 

If tT< a + • choose the largest number dT~ (0, l /n]  with the properties 

(2.7) tT§ = t~ + dT <= a + a, 

(2.8) Ill(t, o ) - f ( t ,  u7.,)11<= 1In for all t E [t 7, tT+ dT] and v ~ C([q,O],D~) 

such that 

11 v - u 77 {1 <= d ",M + max 1[ T ( t ) u  7 - u 71I, 
o ~ d 7  

U ) (2.9) d T ( d , ) u , +  T ( t , + d , - s ) f ( t , u , , ) d s ; D  <=1/2n 
�9 i 

where t, = tT, d, = d7 and u, = u[' (i.e., when there is no danger of confusion, we 

drop n). Also u,? --- u,, = uT~. By (2.9) we see that there is an element u,+~ E D 
such that 

II II 1 T(d,)u ,  + T(ti + d, - s)f(t~, u , ) d s  - u,+l < 1/n. 
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Denot ing  

we have 

p, = ~ ( u ~ + , - T ( d ( ) u , - f , " §  

ft till (2.10) u,+~= T(t~+l-t ,)u,  + T(t ,+~-s) f ( t~,u, , )ds+(t ,+~-t~)p,  
i 

with liP, II--< 1/n. 
Define u"  on [t~, t~+~] by 

f, (2.11) u " ( t ) =  r ( t - t , ) u , +  r(t-s)f(t~,u,,)ds+(t-t~)p,, t~<=t<-t,+,. 

Clearly 

u n(t,) -- u, E D, u"(t,+,) = u,+, ~ D .  

On the o ther  hand  u" can be wri t ten in the form 

u"( t )  = r ( t  - a)q~(O) + ~ '+' r ( t  - s)f(tj, u,j)ds + r ( t  - s)f(t~, u,,)ds 
i=0  j 

(2.12) ~_, 

+ ~ (ts+~- ts)T(t - tj+~)Ps + (t - t~)p,, t~ <= t <- t~+l 
j=o 

(2.13) u n ( a + O ) = r  -q<=O<=O, i.e. u ~ = r  

T he  proof  of this simple fact is left to the reader .  

If t E [t,, t,+,], (2.12) yields 

[lun(t)-,p(o)ll_~llT(t-a),p(o)-,p(o)ll+(t-a)M, t - a < a l ,  

which implies (in view of (2.6)) u"( t )  E S(~(0) ,  r), so u,+l = 

u~(t,+,) ~ O A S(+(O), r). 
We can prove  that u .... E S (~ , r ) .  For  this fact we have to est imate 

Ilu,,+,(o)-q~(o)[I for  each 0 E I - q , 0 ] .  

If - q = < 0 - < - a - t ~ + l ,  then 

II u,,+,(o)- ~(0)tl = II u"(a  + o + t ,+ , -  a ) -  ~(o) l l  

= II,~(t,+, + 0 - a ) -~p(0) l{  < r -  r, < r 

since t~+~- a < a~ (so we apply (2.5)). 

If a - t~+~< 0 =<0, then t~§ 0 > a ,  t~+~+ 0 - a < t~+t- a < a~, Io l<:  t~+~- a < 

a~. In this case (2.12), (2.5) and (2.6) yield: 
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IJ u,",+,(O)- ~(0)11 = II u"(t~+, + o ) -  ~ (o)ll =< II T(t~.,  + 0 - a)~p ( 0 ) -  ~ (O)ll 

+ + II  ,(0)llr, § r - rl = r .  

Therefore ,  for each 0 E [ -  q, 0] we have ]1 u , , . , (O) -  r (0)11 <-r so u .... E S(q~, r). 

Fur the rmore  u .... E C([ - q, 0], D^ ). Indeed,  if --qN0_--<a--t~+~, we have 

already seen that  u,,.,(O) = r  + 0 - a )  E Dx (by hypothesis).  If a - t~+~ _-< 0 -<_ 

0, then u,,.,(0) = u"(t~+~ + O ) E  S0p(0), r) CD, ,  and therefore u,,+,(O) E D ,  for all 

0 E [ - q , 0 ] .  
We  will show now that  l i m , ~ t ,  = a + a~ and l i m , ~ u ,  = u* exists, too. 

First of all, since t~ <_- a + al ,  i = 1 , 2 , . . . ,  l i m ~ t ~  = l exists. 

Let  j > i. Taking into account (2.12) and u ' ( t~)  = u ,  for t, - a, we have 

II u , -  u, tl <----II T(t i  - t,)~p ( 0 ) -  q~(O)l I + ~ II (Z( t j  - t , ) -  I)/(t~., u,.)ll 
m = O  

(2.14) i - 1  

( t . + , -  t . ) §  II T ( t ,  - t,)pm --pro II(t..+,- t , . )+  M ( t ,  - t,). 
rn=O 

Choose k~ large enough such that: 

t, - t, < e ' / 6 M ,  11T(t, - t,)q~(O)- q~(O)}[ <= e ' /6,  

(2 .15)  
Vj->i>- k~, ~ = 2 e ' > O .  

Choose  /~, => k~ large enough such that  

E t 
(2.I6) It T(t j  - t,)p,, - p,, I} <= 3(a + a , ) '  m = O, 1 , - . . ,  k, - 1, j > i > ~  

~ t  

(2.17) ] ] ( T ( t j - t , ) - I ) f ( t ~ , u , . ) [ l ~ 3 ( a + a ,  ),  m = O ,  1 , " ' , k . - l ,  j > - i > - g . .  

Then we have 
i - I  r 

II T(t j  - t , )p .  - pm ll(t,.+~- tin) ~ t~.e . + (2 /n) ( t ,  - t~.) 
,.=o - 3 ( a  + oh~ 

(2.18) 

since t~. < a + o~1, ti - -  t~o < E ' / 6 M ,  

II T(t ,  - t,)pm - p~, t] < Clip,, if < 2  

i - I  

- 3 3r iM = 2 

I . . < !  
3 n M - 6  for n=>2, M > I  

~ ,  II(T(tj - t , ) -  I ) f ( t . .  u,.)ll(tm+,- tin) 
(2.19) m=o 

< e'tk. + 2 ( M -  1)(t~ " < 2 e '  
= 3 ( a  + a l )  - t ~ ) = - - ~  

since a < t~. = < a + a l. 
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Combining (2.15), (2.18), (2.19) and (2.14) we get 

e'  ' ' 2e'  e e 3e'  
(2.20) Ilu'-ujll<-~+-~+~+5 -=~<2~'=~' = 2 VJ => i > /~"  = 

which shows that ui is a Cauchy sequence, therefore limit= u~ = u* exists and 

u* E D t-I S(~0(0), r). 

Define u"(1) = u*, so u" is defined on [a - q, l] with values in D~. It follows 

that lim,~| u ~, = u 7 in C([ - q, 0], D,).  Indeed u,~,(O) = u "(t, + O) E D, and 

u"(t~ + 0 ) ~  u"( l+ O) as i---~oo, uniformly with respect to 0 E [ - q , 0 ]  (since 

u" : [a - q, l] ~ D, is continuous). 

Assume by contradiction that l < a + al. The continuity of f implies the 

existence of a positive number ~ such that 

1 
Ilf(t, v ) - f ( l ,  uT)ll =<~nn' 

(2.21) fora l l  It-ll<-_2g, [ I v - u r l l < - e ( M + 2 ) .  

Choose s with the properties 

(2.22) 0 < s < min (I/n, ~, a + al - l), 

(2.23) d T(s )u*+ r ( l + s - ~ ' f f ( l ' u O d r ; D  = 3 n  

(which is possible, since u~'(O)= u"( l )= u* and so we may use (1.6) for t = l, 
") / ) - - - - /At  . 

(2.24) maxllT(t)z  -zll<=~, Vz E {no, u , , . . . ,  u , , . . .} .  
O < t ~ s  

(The inequality (2.24) is possible since the set {u~ff=o is relatively compact in X). 

Let m be large enough such that ! - t, < s, II u"-,, u71l--- < ~ (which implies 

Ilu,- u* l l=<e ,  since u,,(0)= u"(t~)= u,, u;~(0) = u " ( / ) =  u*) for all iN  m. If 

( t , v ) E [ a , a + l ] x C ( [ - q , O ] , D , )  is such that It-t,l<<-s, I Iv -u , , l l=  < 

sM+maxo~_,~l lT( t )u , -u ,  ll, then I t - l l < - I t - t , l + l t , - l l < = 2 g ,  I luZ-ul l  =< 

II u r - u,ill + II u ,2 - v II ~ 2~ + eM.  Therefore, by (2.21) we have 

IIf(t, v) - f(t,, u,, )ll =< IIf(t, v) - f(l, u,)H + IIf(l, u,) - f(t,, u,, )l[ 

(2.25) _ < 1 + 1  1 
- 3 n  3n < -  Vi=>m. n ~ 

On the other hand d~ = t,+~- t~ < l - ti < s. Taking into account that d~ is the 

maximal number in (0, 1/n] satisfying (2.7), (2.8) and (2.9) it follows that 
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( f"+ '  ) __s foral l  i > m .  (2.26) d T ( s ) u , +  T ( t ~ + s - r ) f ( t , u , , ) d r ; D  > 2 n '  = 

Letting i ~  ~ in (2.26), in view of (2.23) we get a contradiction, therefore 
lim~_~t~ = l = a + a~. 

Let us introduce the following two functions: 

(2.27) a . ( s )  = t, s E [t~, t~+l), a . ( a  + a~) = a + al  

i -1 
(2.28) g , ( t )  = ~ ( t ,+ , -  t , ) T ( t  - t,+,)p, + (t  - t,)p,, t, <= t <= t,+, 

]=o 

g . ( a  + a~) = lim,~=g,(t~) (which exists in view of (2.14) and (2.18)). 

Then I l g . ( / ) l l _ -  < t /n ,  for all a =< t =< a + a~. 

It follows that u" given by (2.12) can be written in the following form: 

u"(t) --- r ( t  - a ) ~ , ( O ) +  T ( t  - s ) f ( a . ( s ) ,  uo.~.~)as + g . ( t )  a N t <= a + ~,  

u " ( a + O ) = ~ o ( O ) ,  - q < = O < = O .  (2.29) 

Denote 

y"( t )  = rj' T ( t  - s ) f ( a . ( s ) ,  u~.(,))ds,  (2.30) 

Clearly y" satisfies 

(2,31) 

(2 .32)  

a < t  < = = a  + o~1. 

l[ Y"(t)[[ ~ (M - 1)a,, 

t IlY"(t)-y"(T)II<=(t-'r)(M-1)+(M-1) IIr(t-s)-r(,-s)llas, 

for all t, r E [ a , a  + al],  t >= r. 

Let t > a, and 6 E (0, t - a). Define 

(2.33) 

f a  t -- 8 y~(t) = T ( t  - s ) f ( a , ( s ) ,  ua,(s))ds 

Since T(8) is compact and f 7 8 T ( t  - s - ~ ) f ( a , ( s ) ,  u~.~,))ds is bounded in n, it 

follows that {y~(t)}~=l is precompact in X. Inasmuch as IlY"(t)-y~(t)[l_- < 

~(M - 1), V8 E (0, t - a), it follows that {y"(t)}:=l is also precompact in X. By 

the Arzela-Ascoli theorem we may assume that l im.~ |  y( t)  exists 

(uniformly on [ a , a + a l ] ) .  By (2.29) it follows that L i m , ~ u " ( t ) =  

L 
t - - 8  

= T ( ~ )  T ( t  - s - ~ ) f ( a . ( s ) ,  u,.~,))ds. 
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T(t  - a)q~(0) + y( t )  = u( t )  exists, a _-< t --- a + a,.  Since a,(s)---> s as n ---> 0% we 

can easily see that u :.<,)---> u, as n ---> ~. Passing to the limit as n ~ in (2.29) it 

follows that u ( t ) =  T ( t - a ) ~ o ( 0 ) +  y( t )  satisfies (1.3) and (1.4). The fact that 

u( t )  E D for each t ~ [a, a + al] follows from the fact that u" (a , ( s ) )  = u"(tl) = 

ui E D  n S(~o(0),r) for t~ <=s<-t~§ a.(s)---~s as n---> oo yields 

lim u" (a , ( s ) )  = u ( s ) E D  n S(q~(0), r). 

With c = a + a, ,  the proof of Theorem 1.1 is complete. 

3. Continuation of solutions. Examples 

Theorem 1.1 is a local existence result of a mild solution to (1.3). In connection 

with the continuation of solutions on [a, b) the following result holds. 

THEOREM 3.1. Let f: [a, oo)• C([ -q ,O] ,D~) - ->X be a continuous function 

which maps bounded sets in [a, ~ ) •  C ( [ -  q, 0], DA) into bounded sets of X. Let 

T(t) ,  t > 0 be a Co semigroup with T( t )  compact for t > O, such that (1.5) is 

satisfied for all t >-_ a and v E C ( [ -  q, 0],D~) with v(O)~ D. Then for each 

E C([ - q, 0], X),  (1.3) has a solution on a maximal  interval of existence 

u:[a ,  tm,x)-->D, u ~ = ~ ,  where either t m , x = + ~ ,  or if tin.,<0% then 

lim,~,~llu(t)[[= +~.  

REMARK 3.1. The proof of this theorem is similar to the proof of Theorem 

3.1 of Pazy [11], so we omit it. The only new fact the reader has to observe is that 

the boundedness of u on [a, tm,~) implies the boundedness of {u,, t E [a, tin,,)} in 

C([ - q, 0], X).  

Let us discuss now the particular case of differential equations with retarded 

argument of the form 

(3.1) d u ( t ) = A u ( t ) + f ( t , u ( t - q ) ) ,  a<=t<b ,  q > O  
dt 

(3.2) u(a+O)=q~(O) ,  -q<-O<=O, ~ E C ( [ - q , O ] , X ) .  

A mild solution to (3.1) is a continuous function u: [a - q ,  b)---> X satisfying 

the integral equation 

(3.3) u(t)= r(t-a)~(0)+ r ( t - s ) f ( s , u ( s - q ) ) d s ,  a <=t<b. 

Using the notations and the proof of Theorem 1.1 (with minor modifications) 

we can prove the following result: 
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THEOgEM 3.2. a) Assume that D and T(t) are as in Theorem 1.1 and 

f: [a, b )x  D ~ X is continuous. A necessary and sufficient condition for the 
existence of a mild solution u: [ a - q , a  + a ] ~ X  to (3.1), such that u, = ~, 
u( t )E D, a <- t <= a + a is the following: 

(3.4) 
1 

lim-ffd(T(h)v(O)+ hf(t, v ( -  q)); D) = 0 
h~,O 

]:or all tE[a ,b ) ,  v E C([-q,O],D~) with v(O)E D. 

b) If in addition f maps bounded subset of [ a, b) • D~ into bounded subsets of X 
then for (3.3) the assertion of Theorem 3.1 also holds. 

If D is open then (3.4) is automatically satisfied. 

The above results can be applied to partial differential equations with retarded 

argument. We will give an example in this direction (similar to those given in 
[14]). 

Let Ft be a bounded domain in R", n => 1, with smooth boundary. Let 

X = U(II) and let f: R+ x R--* R be a continuous function such that the 
Nemytskii operator F: R+• induced by f (i.e. (F(t ,u))(x)= 

f(t,u(x)), t E R. ,  u EU(f~)) is continuous). It is known that the operator 

A = A, with D ( A )  = H~(I~)N H2(Ft), generates a Co semigroup T(t) with T(t) 
compact for t >  0 (see [14]). 

Applying Theorem 3.2 it follows that, for each C([-  q, O]; U(O)), the 

parabolic partial differential equation with retarded argument 

(3.5) Ouxt, x i = a u ( t , x ) + f ( t , u ( t _ q , x ) ) , t ~  t > 0 ,  x E l l  
Ot = 

(3.6) u(O,x)=q~(O,x), -q<=O<=O, x E l I  

has a local mild solution. 

Indeed, using the above notations and (u(t))(x)= u(t,x) for u(t )E U(f~), 
(3.5) and (3.6) can be written under the form 

(3.7) u ' ( t ) = h u ( t ) + F ( t , u ( t - q ) ) ,  t>=O 

(3.8) u(O)= q~(O), - q  <= 0 <=0. 

By Theorem 3.2 (with D open), (3.7)+ (3.8) has a local mild solution 

u :[-q,c(qO]~L2(f~) ,  c ( ~ ) > 0 ,  with u (0 )=  ~p(0) on [ -  q, 0]. 

By definition of F we have ( F ( t , u ( t - q ) ) ) ( x ) = f ( t , u ( t - q , x ) ) ,  x EFt, so 
u (t, x) is a mild solution of (3.5)+ (3.6). 
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REMARK 3.2. If [ doesn't assure the continuity condition of the Nemytskii 
operator F, then the problem of the existence of a mild solution to (3.5) + (3.6) 

remains open, because in this case we cannot apply Theorem 3.2 to (3.7) + (3.8). 
It seems that (3.5) + (3.6) must be treated directly in this case, using a version of a 

technique of Hess [6]. 
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